A second-order partial differential equation of the form
|  | 
(1)
 | 
 
where  ,
,
  ,
,
  ,
,
  ,
 and
,
 and  are functions of
 are functions of  ,
,  ,
,  ,
,  , and
, and  , and
, and  ,
,  ,
,  ,
,  , and
, and  are defined by
 are defined by
The solutions are given by a system of differential equations given by Iyanaga and Kawada (1980).
Other equations called the Monge-Ampère equation are
|  | 
(7)
 | 
 
(Moon and Spencer 1969, p. 171; Zwillinger 1997, p. 134) and
|  | 
(8)
 | 
 
(Gilberg and Trudinger 1983, p. 441; Zwillinger 1997, p. 134).
 
Explore with Wolfram|Alpha
References
Caffarelli, L. A. and Milman, M. Monge Ampère Equation: Applications to Geometry and Optimization.. Providence,
 RI: Amer. Math. Soc., 1999.Fairlie, D. B. and Leznov, A. N.
 "The General Solution of the Complex Monge-Ampère Equation in a Space
 of Arbitrary Dimension." 16 Sep 1999. http://arxiv.org/abs/solv-int/9909014.Gilbarg,
 D. and Trudinger, N. S. Elliptic
 Partial Differential Equations of Second Order. Berlin: Springer-Verlag,
 p. 441, 1983.Iyanaga, S. and Kawada, Y. (Eds.). "Monge-Ampère
 Equations." §276 in Encyclopedic
 Dictionary of Mathematics. Cambridge, MA: MIT Press, pp. 879-880, 1980.Moon,
 P. and Spencer, D. E. Partial
 Differential Equations. Lexington, MA: Heath, p. 171, 1969.Zwillinger,
 D. Handbook
 of Differential Equations, 3rd ed. Boston, MA: Academic Press, 1997.Referenced
 on Wolfram|Alpha
Monge-Ampère
 Differential Equation
Cite this as:
Weisstein, Eric W. "Monge-Ampère Differential
Equation." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/Monge-AmpereDifferentialEquation.html
Subject classifications